What is a solution to the differential equation dy/dx=1/sec^2ydydx=1sec2y?

2 Answers
Oct 20, 2016

y=tan^(-1)(x+C) y=tan1(x+C)

Explanation:

dy/dx = 1/sec^2y dydx=1sec2y

This is a first order separable Differential Equation; so we can "separate the variables" to give:

int sec^2ydy = int1dx sec2ydy=1dx

Integrating gives:

tan y = x + C tany=x+C, where CC is the constant of integration
Hence, the solution is:

y=tan^(-1)(x+C) y=tan1(x+C)

Oct 20, 2016

y = arctan(x+C)y=arctan(x+C)

Explanation:

Grouping variables

dy/cos^2y=dxdycos2y=dx so

tan y = x + Ctany=x+C so

y = arctan(x+C)y=arctan(x+C)