What is a solution to the differential equation dy/dx=(1+x)(1+y)dydx=(1+x)(1+y)?

1 Answer
Jul 18, 2016

y =C e^(x + x^2 / 2 ) - 1y=Cex+x221

Explanation:

dy/dx=(1+x)(1+y)dydx=(1+x)(1+y)

this is separable!

1/(1+y) dy/dx=1+x11+ydydx=1+x

so we integrate both sides

int \ 1/(1+y) dy/dx \ dx=int \ 1+x \ dx

or

int \ 1/(1+y) \ dy=int \ 1+x \ dx

ln (1+y) = x + x^2 / 2 + C

1+y = e^(x + x^2 / 2 + C)

y =C e^(x + x^2 / 2 ) - 1