What is a solution to the differential equation dy/dx = 20ycos(-5x)?

1 Answer
Jul 10, 2016

y = C e^{4 sin 5 x)

Explanation:

it's separable, so we separate

dy/dx = 20ycos(-5x)

1/y dy/dx = 20cos(-5x)

we integrate

int \ 1/y dy/dx \ dx = int \20cos(-5x) \ dx

or

int \ 1/y dy =20 int \cos(-5x) \ dx

int \ 1/y dy =20 int \cos5x \ dx qquad qquad as cos (-varphi) = cos varphi

ln y = 20 1/5 sin 5 x + C

ln y = 4 sin 5 x + C

y = e^{4 sin 5 x + C} = C e^{4 sin 5 x)