What is a solution to the differential equation dy/dx=(3y)/(2+x)dydx=3y2+x?

1 Answer
Jul 19, 2016

y = e^(3C)(2+x)^(3)y=e3C(2+x)3

= C(2+x)^(3)=C(2+x)3

Explanation:

This differential equation is separable.

dy/(dx) = (3y)/(2+x)dydx=3y2+x

dy = (3y)/(2+x) dxdy=3y2+xdx

1/(3y) dy = 1/(2+x) dx13ydy=12+xdx

int 1/(3y) dy = int 1/(2+x) dx13ydy=12+xdx

1/3 int 1/y dy = int 1/(2+x) dx131ydy=12+xdx

1/3 ln y = ln(2+x) + C13lny=ln(2+x)+C

ln y = 3[ln(2+x)+C]lny=3[ln(2+x)+C]

y = e^(3[ln(2+x)+C])y=e3[ln(2+x)+C]

y = e^(3C)(2+x)^(3)y=e3C(2+x)3

y = color(red)(C)(2+x)^(3)y=C(2+x)3

[where C is generic constant]