What is a solution to the differential equation dy/dx=e^(y+2x)?

2 Answers
Jul 16, 2016

y=ln (2/(C - e^(2x)))

Explanation:

it's separable!!

dy/dx=e^(y+2x)

dy/dx=e^ye^(2x)

e^(-y) dy/dx=e^(2x)

int\ e^(-y) dy/dx \ dx=int \ e^(2x) \ dx

int\ e^(-y) \dy=int \ e^(2x) \ dx

-e^(-y) =1/2 e^(2x) +C

e^(-y) =C - 1/2 e^(2x)

ln(e^(-y)) =ln (C - 1/2 e^(2x))

-y =ln (C - 1/2 e^(2x))

y =-ln (C - 1/2 e^(2x))

y =ln (1/(C - 1/2 e^(2x)))

y=ln (2/(C - e^(2x)))

e^(2x)+2e^(-y)+C=0

Explanation:

The given differential equation is

dy/dx=e^(y+2x)

dy/dx=e^(y)*e^(2x)

Multiplying both sides by dx

dy/dx*dx=e^(y)*e^(2x)*dx

dy/cancel(dx)*cancel(dx)=e^(y)*e^(2x)*dx

dy=e^(y)*e^(2x)*dx

Dividing both sides by e^y

dy/e^y=(e^(y)*e^(2x)*dx)/e^y

dy/e^y=(cancel(e^(y))*e^(2x)*dx)/cancel(e^y)

dy/e^y=e^(2x)*dx

e^(-y)*dy-e^(2x)*dx=0

Integrating both sides of the equation

int e^(-y)*dy-int e^(2x)*dx=int 0

-1*int e^(-y)*(-1)dy-1/2*int e^(2x)*2*dx=int 0

-1* e^(-y)-1/2* e^(2x)=C_1

e^(-y)+1/2* e^(2x)+C_1=0

e^(2x)+2e^(-y)+C=0

God bless...I hope the explanation is useful.