What is a solution to the differential equation dy/dx=x/(x+y)?

1 Answer
Jan 31, 2017

See below.

Explanation:

Making y = lambda x and knowing that

dy=lambda dx + x d lambda->(dy)/(dx)=lambda + x(d lambda)/(dx)

we get at

lambda + x (d lambda)/(dx)=1/(lambda+1) or

x (d lambda)/(dx)=-(lambda^2+lambda-1)/(lambda+1) and now this differential equation is separable

(dx)/x=-((lambda+1)d lambda)/(lambda^2+lambda-1)

so

(dx)/x = -((lambda+1)d lambda)/((lambda+1/2)^2-5/4)

giving

logx=-1/10((sqrt(5)+5)log(sqrt5-1-2lambda)-(sqrt(5)-5)log(sqrt5+1+2lambda))+C

Now substituting,

logx=-1/10((sqrt(5)+5)log(sqrt5-1-2y/x)-(sqrt(5)-5)log(sqrt5+1+2y/x))+C

so the solution appears in implicit form

G(y(x),x,C)=0