Making y = lambda x and knowing that
dy=lambda dx + x d lambda->(dy)/(dx)=lambda + x(d lambda)/(dx)
we get at
lambda + x (d lambda)/(dx)=1/(lambda+1) or
x (d lambda)/(dx)=-(lambda^2+lambda-1)/(lambda+1) and now this differential equation is separable
(dx)/x=-((lambda+1)d lambda)/(lambda^2+lambda-1)
so
(dx)/x = -((lambda+1)d lambda)/((lambda+1/2)^2-5/4)
giving
logx=-1/10((sqrt(5)+5)log(sqrt5-1-2lambda)-(sqrt(5)-5)log(sqrt5+1+2lambda))+C
Now substituting,
logx=-1/10((sqrt(5)+5)log(sqrt5-1-2y/x)-(sqrt(5)-5)log(sqrt5+1+2y/x))+C
so the solution appears in implicit form
G(y(x),x,C)=0