What is a solution to the differential equation y' + y + e^(x) x^(4) = 0?

2 Answers
Jul 11, 2016

y =-1/4 e^( x) (2 x^4-4 x^3+6 x^2-6 x+3)+ C e^{-x}

Explanation:

quick re-write, this is not separable so we put it in form for Integrating Factor (I.F.)

y' + y =- e^(x) x^(4)

I.F. is exp (int dx) = e^x

e^x y' + e^x y =- e^(2x) x^(4)

(e^x y)' =- e^(2x) x^(4)

e^x y =- int \ e^(2x) x^(4) \ dx qquad star

int \ e^(2x) x^(4) \ dx requires 4 rounds of IBP, basically reducing that x^4 term down, meaning

int \ e^(2x) x^(4) \ dx = 1/4 e^(2 x) (2 x^4-4 x^3+6 x^2-6 x+3)+ C

so star becomes

e^x y =-1/4 e^(2 x) (2 x^4-4 x^3+6 x^2-6 x+3)+ C

y =-1/4 e^( x) (2 x^4-4 x^3+6 x^2-6 x+3)+ C e^{-x}

Jul 11, 2016

y = e^x/4 (-3 + 6 x - 6 x^2 +4 x^3 - 2x^4+C_0)

Explanation:

The differential equation is linear non-homogeneus.

We propose a solution with structure

y = e^x p(x)

with p(x) = sum_{k=0}^n a_kx^k a polynomial, and substituting into the equation, we have

e^xp(x)+e^xp'(x)+e^xp(x)+e^x x^4 = 0

but e^x ne 0 so

2p(x)+p'(x)+x^4=0

or

2sum_{k=0}^n a_kx^k+sum_{k=0}^n ka_kx^{k-1}+x^4=0

Choosing n = 4 and equating same power coefficients

{(2 a_0 + a_1=0), (2 a_1+ 2 a_2=0), (2 a_2 + 3 a_3=0), (2 a_3 + 4 a_4=0), ( 1 + 2 a_4=0) :}

solving we have

{a_0= -3/4, a_1= 3/2, a_2= -3/2, a_3= 1, a_4= -1/2}

so the solution is

y = e^x/4 (-3 + 6 x - 6 x^2 +4 x^3 - 2x^4+C_0)