What is a solution to the differential equation y'+y/x^2=2/x^3?

2 Answers
Jul 17, 2016

y = 2 (1/x + 1) +C e^{ 1/x}

Explanation:

y'+y/x^2=2/x^3

let's try separating,...., y'=2/x^3 - y/x^2 ie NOT separable, so in wrong category

BUT we can still do it! by writing it in this form we look for the Integrating Factor eta(x)

y'+ color{blue}{1/x^2} y =2/x^3

So here eta(x) = e^{ int color{blue}{ 1/x^2 }\ dx} = e^{ - 1/x}

e^{ - 1/x} y'+ e^{ - 1/x} color{blue}{1/x^2} y =e^{ - 1/x}2/x^3

or

d/dx (y e^{ - 1/x} ) =e^{ - 1/x}2/x^3

int \ d/dx (y e^{ - 1/x} ) \ dx =int \ e^{ - 1/x}2/x^3 \ dx

So

y e^{ - 1/x} = color{red}{int \ e^{ - 1/x}2/x^3 dx} qquad triangle

we'll try IBP on the red bit

int \ e^{ - 1/x}2/x^3 dx

= int \ 1/x^2 e^{ - 1/x} * 2/x \ dx

= int \ d/dx( e^{ - 1/x}) * 2/x \ dx

which by IBP: int uv' = uv - int u' v

= e^{ - 1/x}2/x - int \ e^{ - 1/x} d/dx(2/x) \ dx

= e^{ - 1/x}2/x +2 int \ e^{ - 1/x} (1/x^2) \ dx

= e^{ - 1/x}2/x + 2 e^{ - 1/x} +C

going back to triangle
implies y e^{ - 1/x} = 2 e^{ - 1/x} (1/x + 1) +C

implies y = 2 (1/x + 1) +C e^{ 1/x}

Jul 17, 2016

y(x)=C_3e^{1/x}+2 (1 + 1/x)

Explanation:

This is a linear homogeneus differential equation. Its solution can be assembled as

y(x) = y_h(x) +y_p(x)

where

y'_h(x)+(y_h(x))/x^2=0 and
y'_p(x)+(y_p(x))/x^2=2/x^3

The homogeneus solution is straightforward. Grouping

(y'_h(x))/(y_h(x))=-1/x^2->log_e y_h(x) = C_0+1/x->y_h(x)=C_1e^{1/x}

For the obtention of y_p(x) we will use the Lagrange's variation of constants technique.

Supposing that y_p(x) = C(x)e^{1/x} and substituting in the complete equation we obtain

C'(x) = (2e^{-1/x})/x^3->C(x)=2 e^(-1/x) (1 + 1/x) + C_2

so

y_p(x) = 2 (1 + 1/x) + C_2e^{1/x}

Finally

y(x) = (C_1+C_2)e^{1/x}+2 (1 + 1/x) = C_3e^{1/x}+2 (1 + 1/x)