What is cos(ln(x))?
1 Answer
Dec 20, 2016
Explanation:
Given that:
e^(i theta) = cos theta + i sin theta
cos (-theta) = cos(theta)
sin (-theta) = -sin(theta)
we can deduce that:
cos(theta) = (e^(itheta) + e^(-itheta))/2
So:
cos(ln(x)) = (e^(ilnx)+e^(-ilnx))/2
color(white)(cos(ln(x))) = ((e^(lnx))^i+(e^(lnx))^(-i))/2
color(white)(cos(ln(x))) = (x^i+x^(-i))/2