What is cos(ln(x))?

1 Answer
Dec 20, 2016

cos(ln(x)) = (x^i+x^(-i))/2

Explanation:

Given that:

e^(i theta) = cos theta + i sin theta

cos (-theta) = cos(theta)

sin (-theta) = -sin(theta)

we can deduce that:

cos(theta) = (e^(itheta) + e^(-itheta))/2

So:

cos(ln(x)) = (e^(ilnx)+e^(-ilnx))/2

color(white)(cos(ln(x))) = ((e^(lnx))^i+(e^(lnx))^(-i))/2

color(white)(cos(ln(x))) = (x^i+x^(-i))/2