What is #f(x) = int xe^x# if #f(2)=3 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer sjc Mar 5, 2018 #f(x)=xe^x-e^x+3-e^2# Explanation: #f(x)=intxe^xdx, f(2)=3# we use integration by parts #f(x)=intu(dv)/(dx)dx=uv-intv(du)/(dx)dx# in this case #u=x=>(du)/(dx)=1# #(dv)/(dx)=e^x=>v=e^x# #:.f(x)=xe^x-inte^xdx# #f(x)=xe^x-e^x+c# # f(2)=3# #:. f(2)=3=2e^2-e^2+c# #c=3-e^2# #f(x)=xe^x-e^x+3-e^2# Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? What is #f(x) = int 1/(x-4) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 4045 views around the world You can reuse this answer Creative Commons License