What is f(x) = int xe^xf(x)=∫xex if f(2)=3 f(2)=3? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer sjc Mar 5, 2018 f(x)=xe^x-e^x+3-e^2f(x)=xex−ex+3−e2 Explanation: f(x)=intxe^xdx, f(2)=3f(x)=∫xexdx,f(2)=3 we use integration by parts f(x)=intu(dv)/(dx)dx=uv-intv(du)/(dx)dxf(x)=∫udvdxdx=uv−∫vdudxdx in this case u=x=>(du)/(dx)=1u=x⇒dudx=1 (dv)/(dx)=e^x=>v=e^xdvdx=ex⇒v=ex :.f(x)=xe^x-inte^xdx f(x)=xe^x-e^x+c f(2)=3 :. f(2)=3=2e^2-e^2+c c=3-e^2 f(x)=xe^x-e^x+3-e^2 Answer link Related questions How do you find the constant of integration for intf'(x)dx if f(2)=1? What is a line integral? What is f(x) = int x^3-x if f(2)=4 ? What is f(x) = int x^2+x-3 if f(2)=3 ? What is f(x) = int x - 3 if f(2)=3 ? What is f(x) = int x^2 - 3x if f(2)=1 ? What is f(x) = int 1/x if f(2)=1 ? What is f(x) = int 1/(x+3) if f(2)=1 ? What is f(x) = int 1/(x^2+3) if f(2)=1 ? What is f(x) = int 1/(x-4) if f(2)=1 ? See all questions in Evaluating the Constant of Integration Impact of this question 4460 views around the world You can reuse this answer Creative Commons License