What is int_(0)^(2) xe^(x^2 + 2)dx ?

1 Answer
Nov 14, 2015

1/2(e^6-e^2)

which can be factored into

e^2/2(e^2+1)(e^2-1)

Approximately 198.02

Explanation:

Perform a u-substitution

Let u=x^2+2

(du)/dx=2x

dx=(du)/(2x)

When x=0, u=0^2+2=2

When x=2, u=2^2+2=6

Now make the substitution into the integral

int_2^6xe^u(du)/(2x)

1/2int_2^6e^udu

Now integrate,

1/2e^u

Now evaluate

1/2e^6-1/2e^2

1/2e^2(e^4-1)

1/2e^2(e^2+1)(e^2-1)

This is approximately 198.02