What is int_1^e ln(2x)dx?

1 Answer
Nov 14, 2015

=(e-1)ln2+1

Explanation:

We will need to make use of the standard form :
intln u du=u lnu - u +C

So use substitution and let u=2x. Then du =2dx=>1/2du=dx.

Limits : x=1=>u=2and x=e=>u=2e

Therefore the original integral becomes :

1/2int_2^(2e)lnu du

=1/2[u ln u - u]_2^(2e)

=1/2[(2eln(2e)-2e)-(2ln2-2)]

=(e-1)ln2+1