What is int_1^oo 1/((1+x)(x^(1/2)))dx?

1 Answer
Nov 9, 2015

int_1^oo 1/((1+x)sqrt(x))dx = 2int_1^oo 1/(2(1+x)sqrt(x))

u = sqrt(x)
u^2=x

if sqrt(x) = oo then u = oo
if sqrt(x) = 1 then u = 1

du = 1/(2sqrt(x))dx

So now we have

int_1^oo 1/(1+u^2)du

= 2[arctan(u)]_1^oo

= 2(arctan(oo) - arctan(1))

=2(pi/2-pi/4) = pi/2