What is int_1^oo 1/2^x dx?
1 Answer
Nov 8, 2015
Explanation:
2^t = e^(ln(2)t)
So:
1/(2^x) = e^(-ln(2)x)
d/dx (1/2^x) = d/dx (e^(-ln(2)x)) = -ln(2) e^(-ln(2)x) = -ln(2) 1/2^x
So:
int 1/(2^x) dx = -1/(ln(2)2^x) + C
And:
int_1^oo 1/2^x dx = [-1/(ln(2)2^x) ]_1^oo = 1/(2 ln(2)) ~~ 0.721