What is int_1^oo 1/2^x dx?

1 Answer
Nov 8, 2015

int_1^oo 1/2^x dx = [-1/(ln(2)2^x) ]_1^oo = 1/(2 ln(2)) ~~ 0.721

Explanation:

2^t = e^(ln(2)t)

So:

1/(2^x) = e^(-ln(2)x)

d/dx (1/2^x) = d/dx (e^(-ln(2)x)) = -ln(2) e^(-ln(2)x) = -ln(2) 1/2^x

So:

int 1/(2^x) dx = -1/(ln(2)2^x) + C

And:

int_1^oo 1/2^x dx = [-1/(ln(2)2^x) ]_1^oo = 1/(2 ln(2)) ~~ 0.721