What is int_1^oo e^(-x^2) dx+int_-oo^0 e^(-x^2)dx?

1 Answer
Mar 8, 2017

int_(1)^(oo) \ e^(-x^2) \ dx + int_(-oo)^(0) \ e^(-x^2) \ dx = 1.025629718 ...

Explanation:

Let:

I = int_(1)^(oo) \ e^(-x^2) \ dx + int_(-oo)^(0) \ e^(-x^2) \ dx

Then;

I + int_(0)^(1) \ e^(-x^2) \ dx= int_(-oo)^(oo) \ e^(-x^2) \ dx

Now the integral of e^(-x^2) does not have an elementary solution, but the RHS definte integral has a surprising result (discovered by Carl Guass) of sqrt(pi), and for the LHS we use what is known as the error function erf(x).

erf(x) = 2/sqrt(pi) \ int_0^x e^(-t^2) \ dt

So we can write:

I + sqrt(pi)/2erf(1) = sqrt(pi)
:. I = sqrt(pi) - sqrt(pi)/2 \ erf(1)

And the values of the error function can be looked up in tables:

erf(1) = 0.842700792 ...

So we have:

:. I = 1.025629718 ...