What is int_1^oo e^(-x^2) dx+int_-oo^0 e^(-x^2)dx?
1 Answer
Mar 8, 2017
int_(1)^(oo) \ e^(-x^2) \ dx + int_(-oo)^(0) \ e^(-x^2) \ dx = 1.025629718 ...
Explanation:
Let:
I = int_(1)^(oo) \ e^(-x^2) \ dx + int_(-oo)^(0) \ e^(-x^2) \ dx
Then;
I + int_(0)^(1) \ e^(-x^2) \ dx= int_(-oo)^(oo) \ e^(-x^2) \ dx
Now the integral of
erf(x) = 2/sqrt(pi) \ int_0^x e^(-t^2) \ dt
So we can write:
I + sqrt(pi)/2erf(1) = sqrt(pi)
:. I = sqrt(pi) - sqrt(pi)/2 \ erf(1)
And the values of the error function can be looked up in tables:
erf(1) = 0.842700792 ...
So we have:
:. I = 1.025629718 ...