What is int ( 1+x)/(1+x^2)dx?

1 Answer
Mar 23, 2018

The answer is =arctan(x)+1/2ln(1+x^2)+C

Explanation:

The integral is

int((1+x)dx)/(1+x^2)=int(1dx)/(1+x^2)+int(xdx)/(1+x^2)

I=I_1+I_2

I_1 is a standard integral

I_1=arctan(x)

For I_2, perform the substitution

u=1+x^2, =>, du=2xdx

Therefore,

I_2=1/2int(du)/(u)=1/2ln(u)

=1/2ln(1+x^2)

And finally,

int((1+x)dx)/(1+x^2)=arctan(x)+1/2ln(1+x^2)+C