Let, I=int(-2x^3-x)/(-2x^2+x+7)dx
We have, -2x^3-x=x(-2x^2+x+7)+1/2(-2x^2+x+7)-17/2x-7/2.
:.(-2x^3-x)/(-2x^2+x+7)=x+1/2+(-17x/2-7/2)/(-2x^2+x+7).
Also, d/dx(-2x^2+x+7)=-4x+1," we set, "-17/2x-7/2=17/8(-4x+1)-45/8.
Thus, we have,
(-2x^3-x)/(-2x^2+x+7)=x+1/2+{17/8d/dx(-2x^2+x+7)-45/8}/(-2x^2+x+7).
:. I=int[x+1/2+{17/8d/dx(-2x^2+x+7)-45/8}/(-2x^2+x+7)]dx,
=x^2/2+x/2+17/8ln|-2x^2+x+7|+45/8int1/(2x^2-x-7)dx,
=x^2/2+x/2+17/8ln|-2x^2+x+7|+45/16int1/(x^2-x/2-7/2)dx,
=x^2/2+x/2+17/8ln|-2x^2+x+7|+45/16intdx/{(x-1/4)^2-57/16),
=x^2/2+x/2+17/8ln|-2x^2+x+7|
+45/16*1/(2(sqrt57/4))ln|(x-1/4-sqrt57/4)/(x-1/4+sqrt57/4)|,
rArr I=x^2/2+x/2+17/8ln|-2x^2+x+7|
+45/(8sqrt57)ln|(4x-1-sqrt57)/(4x-1+sqrt57)|+C.
Enjoy Maths.!