What is int (-2x^3-x ) / (-2x^2+x +7 )?

1 Answer
May 23, 2017

x^2/2+x/2+17/8ln|-2x^2+x+7|+45/(8sqrt57)ln|(4x-1-sqrt57)/(4x-1+sqrt57)|+C.

Explanation:

Let, I=int(-2x^3-x)/(-2x^2+x+7)dx

We have, -2x^3-x=x(-2x^2+x+7)+1/2(-2x^2+x+7)-17/2x-7/2.

:.(-2x^3-x)/(-2x^2+x+7)=x+1/2+(-17x/2-7/2)/(-2x^2+x+7).

Also, d/dx(-2x^2+x+7)=-4x+1," we set, "-17/2x-7/2=17/8(-4x+1)-45/8.

Thus, we have,

(-2x^3-x)/(-2x^2+x+7)=x+1/2+{17/8d/dx(-2x^2+x+7)-45/8}/(-2x^2+x+7).

:. I=int[x+1/2+{17/8d/dx(-2x^2+x+7)-45/8}/(-2x^2+x+7)]dx,

=x^2/2+x/2+17/8ln|-2x^2+x+7|+45/8int1/(2x^2-x-7)dx,

=x^2/2+x/2+17/8ln|-2x^2+x+7|+45/16int1/(x^2-x/2-7/2)dx,

=x^2/2+x/2+17/8ln|-2x^2+x+7|+45/16intdx/{(x-1/4)^2-57/16),

=x^2/2+x/2+17/8ln|-2x^2+x+7|

+45/16*1/(2(sqrt57/4))ln|(x-1/4-sqrt57/4)/(x-1/4+sqrt57/4)|,

rArr I=x^2/2+x/2+17/8ln|-2x^2+x+7|

+45/(8sqrt57)ln|(4x-1-sqrt57)/(4x-1+sqrt57)|+C.

Enjoy Maths.!