What is int (4-x ) / (x^3-6x +4 )4xx36x+4?

1 Answer
Mar 15, 2016

int (4-x)/(x^3-6x+4) dx =4xx36x+4dx=

=1/3 ln abs(x-2) + (-1-2sqrt(3))/6 ln abs(x+1-sqrt(3))+ (-1+2sqrt(3))/6 ln abs(x+1+sqrt(3)) + C=13ln|x2|+1236lnx+13+1+236lnx+1+3+C

Explanation:

Express as a partial fraction decomposition first:

x^3-6x+4x36x+4

= (x-2)(x^2+2x-2)=(x2)(x2+2x2)

= (x-2)(x^2+2x+1-3)=(x2)(x2+2x+13)

=(x-2)(x+1-sqrt(3))(x+1+sqrt(3))=(x2)(x+13)(x+1+3)

Solve:

(4-x)/(x^3-6x+4)4xx36x+4

=A/(x-2) + B/(x+1-sqrt(3)) + C/(x+1+sqrt(3))=Ax2+Bx+13+Cx+1+3

=(A(x^2+2x-2)+B(x-2)(x+1+sqrt(3))+C(x-2)(x+1-sqrt(3)))/(x^3-6x+4)=A(x2+2x2)+B(x2)(x+1+3)+C(x2)(x+13)x36x+4

=(A(x^2+2x-2)+B(x^2-(1-sqrt(3))x-2(1+sqrt(3)))+C(x^2-(1+sqrt(3))x-2(1-sqrt(3))))/(x^3-6x+4)=A(x2+2x2)+B(x2(13)x2(1+3))+C(x2(1+3)x2(13))x36x+4

=((A+B+C)x^2+(2A-(1-sqrt(3))B-(1+sqrt(3))C)x-2(A+(1+sqrt(3))B+(1-sqrt(3))C))/(x^3-6x+4)=(A+B+C)x2+(2A(13)B(1+3)C)x2(A+(1+3)B+(13)C)x36x+4

Equating coefficients, we get the following simulataneous equations:

(a)color(white)(-)A+B+C = 0(a)A+B+C=0

(b)color(white)(-)2A-(1-sqrt(3))B-(1+sqrt(3))C = -1(b)2A(13)B(1+3)C=1

(c)color(white)(-)A+(1+sqrt(3))B+(1-sqrt(3))C = -2(c)A+(1+3)B+(13)C=2

Subtracting (c)(c) from (b)(b), we get:

(d)color(white)(-)A-2B-2C = 1(d)A2B2C=1

Adding twice (a)(a) the first equation to (d)(d), we get:

3A = 13A=1

So A = 1/3A=13

Adding (b)+(c)(b)+(c) we get:

(e)color(white)(-)3A+2sqrt(3)B-2sqrt(3)C=-3(e)3A+23B23C=3

We know 3A = 13A=1, so this simplifies to:

2sqrt(3)B-2sqrt(3)C=-423B23C=4

Hence:

(f)color(white)(-)B-C = -2/sqrt(3) = -2sqrt(3)/3(f)BC=23=233

From (a)(a) we get:

(g)color(white)(-)B+C = -1/3(g)B+C=13

Then (f)+(g)(f)+(g) gives us:

2B = (-1-2sqrt(3))/32B=1233

and (g)-(f)(g)(f) gives us:

2C = (-1+2sqrt(3))/32C=1+233

Hence:

(4-x)/(x^3-6x+4)4xx36x+4

=1/(3(x-2)) + (-1-2sqrt(3))/(6(x+1-sqrt(3))) + (-1+2sqrt(3))/(6(x+1+sqrt(3)))=13(x2)+1236(x+13)+1+236(x+1+3)

Then use: int 1/t dt = ln abs(t) + C1tdt=ln|t|+C to find:

int (4-x)/(x^3-6x+4) dx =4xx36x+4dx=

int 1/(3(x-2)) + (-1-2sqrt(3))/(6(x+1-sqrt(3))) + (-1+2sqrt(3))/(6(x+1+sqrt(3))) dx13(x2)+1236(x+13)+1+236(x+1+3)dx

=1/3 ln abs(x-2) + (-1-2sqrt(3))/6 ln abs(x+1-sqrt(3))+ (-1+2sqrt(3))/6 ln abs(x+1+sqrt(3)) + C=13ln|x2|+1236lnx+13+1+236lnx+1+3+C