What is int (4-x ) / (x^3-6x +4 )∫4−xx3−6x+4?
1 Answer
int (4-x)/(x^3-6x+4) dx =∫4−xx3−6x+4dx=
=1/3 ln abs(x-2) + (-1-2sqrt(3))/6 ln abs(x+1-sqrt(3))+ (-1+2sqrt(3))/6 ln abs(x+1+sqrt(3)) + C=13ln|x−2|+−1−2√36ln∣∣x+1−√3∣∣+−1+2√36ln∣∣x+1+√3∣∣+C
Explanation:
Express as a partial fraction decomposition first:
x^3-6x+4x3−6x+4
= (x-2)(x^2+2x-2)=(x−2)(x2+2x−2)
= (x-2)(x^2+2x+1-3)=(x−2)(x2+2x+1−3)
=(x-2)(x+1-sqrt(3))(x+1+sqrt(3))=(x−2)(x+1−√3)(x+1+√3)
Solve:
(4-x)/(x^3-6x+4)4−xx3−6x+4
=A/(x-2) + B/(x+1-sqrt(3)) + C/(x+1+sqrt(3))=Ax−2+Bx+1−√3+Cx+1+√3
=(A(x^2+2x-2)+B(x-2)(x+1+sqrt(3))+C(x-2)(x+1-sqrt(3)))/(x^3-6x+4)=A(x2+2x−2)+B(x−2)(x+1+√3)+C(x−2)(x+1−√3)x3−6x+4
=(A(x^2+2x-2)+B(x^2-(1-sqrt(3))x-2(1+sqrt(3)))+C(x^2-(1+sqrt(3))x-2(1-sqrt(3))))/(x^3-6x+4)=A(x2+2x−2)+B(x2−(1−√3)x−2(1+√3))+C(x2−(1+√3)x−2(1−√3))x3−6x+4
=((A+B+C)x^2+(2A-(1-sqrt(3))B-(1+sqrt(3))C)x-2(A+(1+sqrt(3))B+(1-sqrt(3))C))/(x^3-6x+4)=(A+B+C)x2+(2A−(1−√3)B−(1+√3)C)x−2(A+(1+√3)B+(1−√3)C)x3−6x+4
Equating coefficients, we get the following simulataneous equations:
(a)color(white)(-)A+B+C = 0(a)−A+B+C=0
(b)color(white)(-)2A-(1-sqrt(3))B-(1+sqrt(3))C = -1(b)−2A−(1−√3)B−(1+√3)C=−1
(c)color(white)(-)A+(1+sqrt(3))B+(1-sqrt(3))C = -2(c)−A+(1+√3)B+(1−√3)C=−2
Subtracting
(d)color(white)(-)A-2B-2C = 1(d)−A−2B−2C=1
Adding twice
3A = 13A=1
So
Adding
(e)color(white)(-)3A+2sqrt(3)B-2sqrt(3)C=-3(e)−3A+2√3B−2√3C=−3
We know
2sqrt(3)B-2sqrt(3)C=-42√3B−2√3C=−4
Hence:
(f)color(white)(-)B-C = -2/sqrt(3) = -2sqrt(3)/3(f)−B−C=−2√3=−2√33
From
(g)color(white)(-)B+C = -1/3(g)−B+C=−13
Then
2B = (-1-2sqrt(3))/32B=−1−2√33
and
2C = (-1+2sqrt(3))/32C=−1+2√33
Hence:
(4-x)/(x^3-6x+4)4−xx3−6x+4
=1/(3(x-2)) + (-1-2sqrt(3))/(6(x+1-sqrt(3))) + (-1+2sqrt(3))/(6(x+1+sqrt(3)))=13(x−2)+−1−2√36(x+1−√3)+−1+2√36(x+1+√3)
Then use:
int (4-x)/(x^3-6x+4) dx =∫4−xx3−6x+4dx=
int 1/(3(x-2)) + (-1-2sqrt(3))/(6(x+1-sqrt(3))) + (-1+2sqrt(3))/(6(x+1+sqrt(3))) dx∫13(x−2)+−1−2√36(x+1−√3)+−1+2√36(x+1+√3)dx
=1/3 ln abs(x-2) + (-1-2sqrt(3))/6 ln abs(x+1-sqrt(3))+ (-1+2sqrt(3))/6 ln abs(x+1+sqrt(3)) + C=13ln|x−2|+−1−2√36ln∣∣x+1−√3∣∣+−1+2√36ln∣∣x+1+√3∣∣+C