Here,
I=int(4x)/sqrt(4-x^4)dxI=∫4x√4−x4dx
x^2=2sinu=>2xdx=2cosudu=>4xdx=4cosudux2=2sinu⇒2xdx=2cosudu⇒4xdx=4cosudu
andsinu=x^2/2=>color(blue)(u=sin^-1(x^2/2)andsinu=x22⇒u=sin−1(x22)
So,
I=int(4cosu)/sqrt(4-4sin^2u)duI=∫4cosu√4−4sin2udu
=int(4cosu)/sqrt(4cos^2u)du=∫4cosu√4cos2udu
=int(4cosu)/(2cosu)du=∫4cosu2cosudu
=int2du=∫2du
=2u+c...to where,color(blue)(u=sin^-1(x^2/2)
Hence,
I=2sin^-1(x^2/2)+c