What is int (4x ) / sqrt(4-x^4) dx4x4x4dx?

1 Answer
May 28, 2018

I=2sin^-1(x^2/2)+cI=2sin1(x22)+c

Explanation:

Here,

I=int(4x)/sqrt(4-x^4)dxI=4x4x4dx

x^2=2sinu=>2xdx=2cosudu=>4xdx=4cosudux2=2sinu2xdx=2cosudu4xdx=4cosudu

andsinu=x^2/2=>color(blue)(u=sin^-1(x^2/2)andsinu=x22u=sin1(x22)

So,

I=int(4cosu)/sqrt(4-4sin^2u)duI=4cosu44sin2udu

=int(4cosu)/sqrt(4cos^2u)du=4cosu4cos2udu

=int(4cosu)/(2cosu)du=4cosu2cosudu

=int2du=2du

=2u+c...to where,color(blue)(u=sin^-1(x^2/2)

Hence,

I=2sin^-1(x^2/2)+c