What is int 4xln(x^2+1) dx?

1 Answer
Apr 4, 2018

int 4xln(x^2+1)dx = 2 (x^2+1)ln(x^2+1)-2x^2 +C

Explanation:

Substitute:

u = x^2+1

du = 2xdx

so:

int 4xln(x^2+1)dx = 2 int ln u du

Integrate now by parts:

int ln u du = u ln u - int u d(lnu)

int ln u du = u ln u - int u (du)/u

int ln u du = u ln u - int du

int ln u du = u ln u -u +C

int ln u du = u (ln u -1) +C

undoing the substitution:

int 4xln(x^2+1)dx = 2 (x^2+1)(ln(x^2+1)-1) +C

and simplifying:

int 4xln(x^2+1)dx = 2 (x^2+1)ln(x^2+1)-2x^2 +C

where we absorbed all constants in C.