What is int (5)/(1+3x)^3dx5(1+3x)3dx?

1 Answer
Mar 15, 2018

-5/{6(1+3x)^2}+C56(1+3x)2+C

Explanation:

The integral I=int5/(1+3x)^3dxI=5(1+3x)3dx, can be directly dealt with, if we

use the following Rule :

intf(x)dx=F(x)+crArrintf(ax+b)dx=1/aF(ax+b)+c', (ane0).

f(x)=1/x^3=x^-3," we have, "F(x)=x^(-3+1)/(-3+1)=-1/(2x^2).

:. int5/(1+3x)^3dx=5int1/(1+3x)^3dx,

=5[1/3{-1/2*1/(1+3x)^2}].

rArr I=-5/6*1/(1+3x)^2+C.

OTHERWISE,

Let 1+3x=t," so that, "3dx=dt, or, dx=1/3dt.

:. I=int5/(1+3x)^3dx=5int1/(1+3x)^3dx,

=5int1/t^3*1/3dt,

=5/3intt^-3dt,

=5/3*t^(-3+1)/(-3+1),

=-5/6*t^-2,

=-5/(6t^2).

rArr I=-5/{6(1+3x)^2}+C, as before!

Enjoy Maths.!