int(6x^5-2x^4+3x^3+x^2-x-2)dx =x^6-frac{2x^5}{5}+frac{3x^4}{4}+frac{x^3}{3}-frac{x^2}{2}-2x+c, where c is the constant of integration
Explanation:
int(6x^5-2x^4+3x^3+x^2-x-2)dx =int(6x^5)dx-2intx^4dx+3intx^3dx +intx^2dx-intxdx-2intdx =x^6-frac{2x^5}{5}+frac{3x^4}{4}+frac{x^3}{3}-frac{x^2}{2}-2x+c, where c is the constant of integration