What is cotxcosxdx?

1 Answer
Apr 13, 2018

The answer is =cosxln(|cscx+cotx|)+C

Explanation:

Reminder

cotx=cosxsinx

cos2x+sin2x=1

cscxdx=ln(cscx+cotx)

Therefore,

The integral is

I=cotxcosxdx=cosxsinxcosxdx

=cos2xdxsinx

=1sin2xsinxdx

=dxsinxsinxdx

=cscxdx+cosx

=ln(|cscx+cotx|)+cosx+C