What is #int cotxcosx dx#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Narad T. Apr 13, 2018 The answer is #=cosx-ln(|cscx+cotx|)+C# Explanation: #"Reminder"# #cotx=cosx/sinx# #cos^2x+sin^2x=1# #intcscxdx=-ln(cscx+cotx)# Therefore, The integral is #I=intcotxcosxdx=intcosx/sinx*cosxdx# #=int(cos^2xdx)/sinx# #=int(1-sin^2x)/sinxdx# #=intdx/sinx-intsinxdx# #=intcscxdx+cosx# #=-ln(|cscx+cotx|)+cosx+C# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 14932 views around the world You can reuse this answer Creative Commons License