What is ∫e−x2dx?
1 Answer
Nov 14, 2015
∫e−x2dx=√π2erf(x)+C
=∞∑n=0(−1)n(n!)(2n+1)x2n+1+C
Explanation:
The error function
erf(x)=2√π∫x0e−t2dt
So
Can we find out the value of the integral without using this special non-elementary function?
We can at least express it in terms of a power series:
et=∞∑n=0tnn!
Substituting
e−x2=∞∑n=0(−1)nn!x2n
So:
∫e−x2dx=∫(∞∑n=0(−1)nn!x2n)dx
=∞∑n=0(−1)n(n!)(2n+1)x2n+1+C
Hence the power series for
erf(x)=2√π∞∑n=0(−1)n(n!)(2n+1)x2n+1
since