What is #int ln(x)^2+xdx#?

1 Answer
Feb 21, 2016

#x\ln (x^2)-2x+\frac{x^2}{2}+C#

Explanation:

#\int \ln (x^2)+xdx#

Applying sum rule:
=#\int f(x)\pm g\(x)dx=\int f(x)dx\pm \int g(x)dx#

=#\int \ln (x^2)dx+\int \xdx#.... (i)

=#\int \ln (x^2)dx#

Applying integration by parts:

=#\int \uv'=uv-\int u'v#

=#u=\ln (x^2),\u'=\frac{2}{x},v'=1,v=x#

=#\ln (x^2)x-\int \frac{2}{x}xd#

=#x\ln (x^2)-\int 2dx#
(#int 2dx#= 2x)

=#x\ln (x^2)-2x#

Also,
=#\int xdx=\frac{x^2}{2}#
(Applying power rule, #\int x^adx=\frac{x^{a+1}}{a+1}#)

Now substituting the value in equation (i),

=#x\ln (x^2)-2x+\frac{x^2}{2}#

=#x\ln (x^2)-2x+\frac{x^2}{2}# + C