What is int (lnx)^2 / x^3dx?

1 Answer
Jun 1, 2018

I=-1/(4x^2)[2(lnx)^2+2lnx+1]+c

Explanation:

Here,

I=int(lnx)^2/x^3 dx=int(lnx)^2/x^2*1/xdx

Let,

lnx=u=>1/xdx=du

and x=e^u

So,

I=intu^2/(e^u)^2*du

=int u^2*e^(-2u)du

"Using "color(blue)"Integration by Parts :"

I=u^2*inte^(-2u)du-int((2u)*inte^(-2u)du)du

=u^2(e^(-2u)/(-2))-int(2u)(e^(-2u)/(-2))du

=-u^2/(2e^(2u))+int(u*e^(-2u))du

Again "using "color(blue)"Integration by Parts :"

I=-u^2/(2e^(2u))+[u*(e^(-2u)/(-2))-int1*(e^(-2u)/(-2))du]

=-u^2/(2e^(2u))-u/(2e^(2u))+1/2inte^(-2u)du

=-u^2/(2e^(2u))-u/(2e^(2u))+1/2*(e^(-2u)/(-2))+c

=-u^2/(2e^(2u))-u/(2e^(2u))-1/(4e^(2u))+c

=-1/(4e^(2u))[2u^2+2u+1]+c

Subst. back , u=lnx ande^u=x, we get

I=-1/(4x^2)[2(lnx)^2+2lnx+1]+c

NOTE :

inte^(-2u)du , we put , -2u=t=>u=-t/2=>du=-1/2dt

So,

inte^(-2u)du=inte^t(-1/2)dt=-1/2inte^tdt=-1/2e^t=e^(-2u)/(-2)