What is int_-oo^oo (x^2)(e^(-x^3))dx?

1 Answer
Jan 9, 2016

The integral diverges to infinity

Explanation:

First, we can use u substitution to find the indefinite integral:

Let u = -x^3
Then du = -3x^2dx => x^2dx = -1/3du

Then

inte^(-x^3)x^2dx = inte^u(-1/3)du

= -1/3inte^udu

= -1/3e^u + C

= -1/3e^(-x^3) + C

Now, evaluating the definite integral:

int_(-oo)^oox^2e^(-x^3)dx = lim_(A->-oo)lim_(B->oo)int_A^Bx^2e^(-x^3)dx

= lim_(A->-oo)lim_(B->oo)[-1/3e^(-x^3)]_A^B

= lim_(A->-oo)lim_(B->oo)1/3(e^(-A^3)-e^(-B^3))

= lim_(A->-oo)1/3(e^(-A^3)-0)

= oo

Thus the integral does not converge.