What is int sin(lnx) dxsin(lnx)dx?

1 Answer
Dec 17, 2015

Use integration by parts twice and solve for the integral to find

intsin(ln(x))dx = (x(sin(ln(x)) - cos(ln(x))))/2 + Csin(ln(x))dx=x(sin(ln(x))cos(ln(x)))2+C

Explanation:

We will proceed through integration by parts.

Let I = intsin(ln(x))dxI=sin(ln(x))dx

Integration by Parts (1)

Let u = sin(ln(x))u=sin(ln(x)) and dv = dxdv=dx

Then du = cos(ln(x))/xdxdu=cos(ln(x))xdx and v = xv=x

Applying the integration by parts formula intudv = uv - intvduudv=uvvdu

I = intsin(ln(x))dxI=sin(ln(x))dx

= xsin(ln(x)) - intcos(ln(x))dx=xsin(ln(x))cos(ln(x))dx

Integration by Parts (2)

Let u = cos(ln(x))u=cos(ln(x)) and dv = dxdv=dx

Then du = -sin(ln(x))/xdu=sin(ln(x))x and v = xv=x

Applying the formula, we have

intcos(ln(x))dx = xcos(ln(x)) - int-sin(ln(x))dxcos(ln(x))dx=xcos(ln(x))sin(ln(x))dx

= xcos(ln(x)) + intsin(ln(x))dx=xcos(ln(x))+sin(ln(x))dx

= xcos(ln(x)) + I=xcos(ln(x))+I

Substituting this into the result from the first integration by parts, we obtain

I = xsin(ln(x)) - xcos(ln(x)) - II=xsin(ln(x))xcos(ln(x))I

=> 2I = x(sin(ln(x)) - cos(ln(x)))2I=x(sin(ln(x))cos(ln(x)))

=> I = (x(sin(ln(x)) - cos(ln(x))))/2I=x(sin(ln(x))cos(ln(x)))2

But in the process of adding II to both sides, we lost the constant, and so for our final answer, we add it back in to get

I = intsin(ln(x))dx = (x(sin(ln(x)) - cos(ln(x))))/2 + CI=sin(ln(x))dx=x(sin(ln(x))cos(ln(x)))2+C