We will proceed through integration by parts.
Let I = intsin(ln(x))dxI=∫sin(ln(x))dx
Integration by Parts (1)
Let u = sin(ln(x))u=sin(ln(x)) and dv = dxdv=dx
Then du = cos(ln(x))/xdxdu=cos(ln(x))xdx and v = xv=x
Applying the integration by parts formula intudv = uv - intvdu∫udv=uv−∫vdu
I = intsin(ln(x))dxI=∫sin(ln(x))dx
= xsin(ln(x)) - intcos(ln(x))dx=xsin(ln(x))−∫cos(ln(x))dx
Integration by Parts (2)
Let u = cos(ln(x))u=cos(ln(x)) and dv = dxdv=dx
Then du = -sin(ln(x))/xdu=−sin(ln(x))x and v = xv=x
Applying the formula, we have
intcos(ln(x))dx = xcos(ln(x)) - int-sin(ln(x))dx∫cos(ln(x))dx=xcos(ln(x))−∫−sin(ln(x))dx
= xcos(ln(x)) + intsin(ln(x))dx=xcos(ln(x))+∫sin(ln(x))dx
= xcos(ln(x)) + I=xcos(ln(x))+I
Substituting this into the result from the first integration by parts, we obtain
I = xsin(ln(x)) - xcos(ln(x)) - II=xsin(ln(x))−xcos(ln(x))−I
=> 2I = x(sin(ln(x)) - cos(ln(x)))⇒2I=x(sin(ln(x))−cos(ln(x)))
=> I = (x(sin(ln(x)) - cos(ln(x))))/2⇒I=x(sin(ln(x))−cos(ln(x)))2
But in the process of adding II to both sides, we lost the constant, and so for our final answer, we add it back in to get
I = intsin(ln(x))dx = (x(sin(ln(x)) - cos(ln(x))))/2 + CI=∫sin(ln(x))dx=x(sin(ln(x))−cos(ln(x)))2+C