What is int (x^2-5x+4 ) / (x^3-2x +1 )?
1 Answer
int (x^2-5x+4)/(x^3-2x+1) dx
= ((5-9sqrt(5))/10)ln(abs(x+1/2-sqrt(5)/2)) + ((5+9sqrt(5))/10)ln(abs(x+1/2+sqrt(5)/2)) + C
Explanation:
(x^2-5x+4)/(x^3-2x+1)
=(color(red)(cancel(color(black)((x-1))))(x-4))/(color(red)(cancel(color(black)((x-1))))(x^2+x-1)
=(x-4)/(x^2+x-1)
=(x-4)/((x+1/2)^2-5/4)
=(x-4)/((x+1/2-sqrt(5)/2)(x+1/2+sqrt(5)/2))
=A/(x+1/2-sqrt(5)/2) + B/(x+1/2+sqrt(5)/2)
=(A(x+1/2+sqrt(5)/2)+B(x+1/2-sqrt(5)/2))/(x^2+x-1)
=((A+B)x + ((1/2+sqrt(5)/2)A+(1/2-sqrt(5)/2)B))/(x^2+x-1)
Equating coefficients:
{ (A+B=1), ((1/2+sqrt(5)/2)A+(1/2-sqrt(5)/2)B = -4) :}
Subtract
sqrt(5)/2(A-B) = -9/2
Multiply both sides by
A-B = -9/sqrt(5) = -(9sqrt(5))/5
Add this to the first equation to find:
2A = 1-(9sqrt(5))/5 = (5-9sqrt(5))/5
Hence:
A = (5-9sqrt(5))/10
B = (5+9sqrt(5))/10
So:
int (x^2-5x+4)/(x^3-2x+1) dx
= int ((5-9sqrt(5))/(10(x+1/2-sqrt(5)/2)) + (5+9sqrt(5))/(10(x+1/2+sqrt(5)/2))) dx
= ((5-9sqrt(5))/10)ln(abs(x+1/2-sqrt(5)/2)) + ((5+9sqrt(5))/10)ln(abs(x+1/2+sqrt(5)/2)) + C