What is int (x^2-5x+4 ) / (x^3-2x +1 )?

1 Answer
Jul 28, 2016

int (x^2-5x+4)/(x^3-2x+1) dx

= ((5-9sqrt(5))/10)ln(abs(x+1/2-sqrt(5)/2)) + ((5+9sqrt(5))/10)ln(abs(x+1/2+sqrt(5)/2)) + C

Explanation:

(x^2-5x+4)/(x^3-2x+1)

=(color(red)(cancel(color(black)((x-1))))(x-4))/(color(red)(cancel(color(black)((x-1))))(x^2+x-1)

=(x-4)/(x^2+x-1)

=(x-4)/((x+1/2)^2-5/4)

=(x-4)/((x+1/2-sqrt(5)/2)(x+1/2+sqrt(5)/2))

=A/(x+1/2-sqrt(5)/2) + B/(x+1/2+sqrt(5)/2)

=(A(x+1/2+sqrt(5)/2)+B(x+1/2-sqrt(5)/2))/(x^2+x-1)

=((A+B)x + ((1/2+sqrt(5)/2)A+(1/2-sqrt(5)/2)B))/(x^2+x-1)

Equating coefficients:

{ (A+B=1), ((1/2+sqrt(5)/2)A+(1/2-sqrt(5)/2)B = -4) :}

Subtract 1/2 of the first equation from the second to get:

sqrt(5)/2(A-B) = -9/2

Multiply both sides by 2/sqrt(5) to find:

A-B = -9/sqrt(5) = -(9sqrt(5))/5

Add this to the first equation to find:

2A = 1-(9sqrt(5))/5 = (5-9sqrt(5))/5

Hence:

A = (5-9sqrt(5))/10

B = (5+9sqrt(5))/10

So:

int (x^2-5x+4)/(x^3-2x+1) dx

= int ((5-9sqrt(5))/(10(x+1/2-sqrt(5)/2)) + (5+9sqrt(5))/(10(x+1/2+sqrt(5)/2))) dx

= ((5-9sqrt(5))/10)ln(abs(x+1/2-sqrt(5)/2)) + ((5+9sqrt(5))/10)ln(abs(x+1/2+sqrt(5)/2)) + C