What is int (x^3-2x^2+5x-3 ) / (-x^2+ 3 x -4 )dxx32x2+5x3x2+3x4dx?

1 Answer
Dec 11, 2017

-(x^2/2+x)-2ln|x^2-3x+4|+2/sqrt7*arc tan((2x-3)/sqrt7)+C.(x22+x)2lnx23x+4+27arctan(2x37)+C.

Explanation:

Let, I=int(x^3-2x^2+5x-3)/(-x^2+3x-4)dx,I=x32x2+5x3x2+3x4dx,

=-int(x^3-2x^2+5x-3)/(x^2-3x+4)dx.=x32x2+5x3x23x+4dx.

Now, x^3-2x^2+5x-3,x32x2+5x3,

=x(x^2-3x+4)+1(x^2-3x+4)+4x-7,=x(x23x+4)+1(x23x+4)+4x7,

=(x+1)(x^2-3x+4)+(4x-7).=(x+1)(x23x+4)+(4x7).

rArr (x^3-2x^2+5x-3)/(x^2-3x+4),x32x2+5x3x23x+4,

=x+1+(4x-7)/(x^2-3x+4).=x+1+4x7x23x+4.

:. I=-int{x+1+(4x-7)/(x^2-3x+4)}dx,

=-(x^2/2+x)-int(4x-7)/(x^2-3x+4)dx.......(star).

To evaluate the Integral in the R.H.S. of (star), we have to set,

4x-7=m*d/dx(x^2-3x+4)+n," where "m,n in RR; i.e.,

we have to determine m,n in RR, such that,

4x-7=m(2x-3)+n.

Clearly, m=2, n=-1.

:. int(4x-7)/(x^2-3x+4)dx,

=int{2*d/dx(x^2-3x+4)-1}/(x^2-3x+4)dx,

=2int{d/dx(x^2-3x+4)}/(x^2-3x+4)dx-int1/(x^2-3x+4)dx,

=2ln|(x^2-3x+4)|-int1/(x^2-3x+9/4+7/4}dx,

=2ln|(x^2-3x+4)|-int1/{(x-3/2)^2+(sqrt7/2)^2}dx,

=2ln|x^2-3x+4|-1/(sqrt7/2)*arc tan{(x-3/2)/(sqrt7/2)}.

Altogether, we have,

I=-(x^2/2+x)-2ln|x^2-3x+4|
+2/sqrt7*arc tan((2x-3)/sqrt7)+C.

Enjoy Maths.!