What is int (x^3-2x^2+6x-3 ) / (-x^2+ 9 x +2 )?

1 Answer

int(x^3-2x^2+6x-3)/(-x^2+9x+2)dx=
-x^2/2-7x-71/2*ln(x^2-9x-2)
-(661sqrt(89))/178*ln((2x-9-sqrt89)/(2x-9+sqrt89))+C

Explanation:

From the given integrand, divide the numerator by the denominator. So that
(x^3−2x^2+6x−3)/(−x^2+9x+2)=-x-7-(71x+11)/(x^2-9x-2)

We have to simplify the third term, so that

(71x+11)/(x^2-9x-2)=((71/2)(2x-9+9+(2*11)/71))/(x^2-9x-2)

that is to force into the numerator a term (2x-9) which is the derivative of (x^2-9x-2), enabling us to use int((du)/u)=ln u+C.

We can also use int (du)/(u^2-a^2)=1/(2a)*ln((u-a)/(u+a))+C afterwards

the continuation is

(71x+11)/(x^2-9x-2)=((71/2)(2x-9+661/71))/(x^2-9x-2)

(71x+11)/(x^2-9x-2)=((71/2)(2x-9)+(71/2)(661/71))/(x^2-9x-2)

Now, we are ready to integrate

int(x^3−2x^2+6x−3)/(−x^2+9x+2)dx=int(-x-7-(71x+11)/(x^2-9x-2))dx

int(x^3−2x^2+6x−3)/(−x^2+9x+2)dx=

int(-x-7-((71/2)(2x-9)+(71/2)(661/71))/(x^2-9x-2))dx

int(-x-7-((71/2)(2x-9))/(x^2-9x-2)-((71/2)(661/71))/(x^2-9x-2))dx

also by "completing the square"

int(-x-7-((71/2)(2x-9))/(x^2-9x-2)-((661/2))/((x-9/2)^2-(sqrt89/2)^2))dx

and

-x^2/2-7x
-71/2*ln(x^2-9x-2)-(661sqrt(89))/178*ln((2x-9-sqrt89)/(2x-9+sqrt89))+C

God bless....I hope the explanation is useful.