Let's do a long division
color(white)(aaaa)-x^3+color(white)(aaaaaaaaa)9x-1color(white)(aa)∣-2x^2-3x+5
color(white)(aaaa)-x^3+color(white)(a)-3/2x^2+5/2xcolor(white)(aaaaa)∣x/2-3/4
color(white)(aaaaaaa)0+color(white)(a)+3/2x^2+13/2x-1
color(white)(aaaaaaaaaaa)#color(white)(aaa)3/2x^2+9/4x-15/4#
color(white)(aaaaaaaaaaa)#color(white)(aaaaa)0+17/4x+11/4#
-2x^2-3x+5=-(2x+5)(x-1)
So,
(-x^3+9x-1)/(-2^2-3x+5)=(x/2-3/4)+(17/4x+11/4)/(-2x^2-3x+5)
=(x/2-3/4)-(17/4x+11/4)/((2x+5)(x-1))
Let's do a partial fraction decomposition
(17/4x+11/4)/((2x+5)(x-1))=A/(2x+5)+B/(x-1)
=(A(x-1)+B(2x+5))/((2x+5)(x-1))
17/4x+11/4=A(x-1)+B(2x+5)
Let x=1, =>, 28/4=7B, =>, B=1
Let x=0,=>,11/4=-A+5B
A=5-11/4=9/4
So,
int((-x^3+9x-1)dx)/(-2^2-3x+5)
=int(x/2-3/4)dx-9/4intdx/(2x+5)-intdx/(x-1)
=x^2/4-3/4x-9/8ln(∣2x+5∣)-ln(∣x-1∣)+C