What is int x^3ln(x+1+x^2) dx?
1 Answer
Explanation:
I=intx^3ln(x^2+x+1)dx
Use integration by parts (IBP). It takes the form
{(u=ln(x^2+x+1),=>,du=(2x+1)/(x^2+x+1)dx),(dv=x^3dx,=>,v=1/4x^4):}
Thus:
I=1/4x^4ln(x^2+x+1)-1/4int(2x^5+x^4)/(x^2+x+1)
Letting
J=int((-x-2)/(x^2+x+1)+2x^3-x^2-x+2)dx
Integrating the non-fractional terms first, we see that
J=int(-x-2)/(x^2+x+1)dx+1/2x^4-1/3x^3-1/2x^2+2x
Now let
K=-1/2int(2x+1+3)/(x^2+x+1)=-1/2int(2x+1)/(x^2+x+1)-1/2int3/(x^2+x+1)
The first can be solved using
K=-1/2intdt/t-3/2int1/(x^2+x+1)dx=-1/2lnabs(t)-3/2int1/(x^2+x+1)dx
K=-1/2ln(x^2+x+1)-3/2int1/(x^2+x+1)dx
Letting
H=int1/((x+1/2)^2+3/4)dx
Let
H=int1/(3/4tan^2theta+3/4)(sqrt3/2sec^2thetad theta)
H=4/3 sqrt3/2int1/(tan^2theta+1)sec^2thetad theta
Since
H=2/sqrt3intd theta=2/sqrt3theta
From
H=2/sqrt3arctan((2x+1)/sqrt3)
Now back-substituting into
K=-1/2ln(x^2+x+1)-sqrt3arctan((2x+1)/sqrt3)
This fits into
J=-1/2ln(x^2+x+1)-sqrt3arctan((2x+1)/sqrt3)+1/2x^4-1/3x^3-1/2x^2+2x
Finally, since
I=1/4x^4ln(x^2+x+1)+1/8ln(x^2+x+1)+sqrt3/4arctan((2x+1)/sqrt3)-1/8x^4+1/12x^3+1/8x^2-1/2x+C