What is int x^3ln(x+1+x^2) dx?

1 Answer
Nov 23, 2016

1/4x^4ln(x^2+x+1)+1/8ln(x^2+x+1)+sqrt3/4arctan((2x+1)/sqrt3)-1/8x^4+1/12x^3+1/8x^2-1/2x+C

Explanation:

I=intx^3ln(x^2+x+1)dx

Use integration by parts (IBP). It takes the form intudv=uv-intvdu. For this integral, intx^3ln(x^2+x+1)dx, let

{(u=ln(x^2+x+1),=>,du=(2x+1)/(x^2+x+1)dx),(dv=x^3dx,=>,v=1/4x^4):}

Thus:

I=1/4x^4ln(x^2+x+1)-1/4int(2x^5+x^4)/(x^2+x+1)

Letting J=int(2x^5+x^4)/(x^2+x+1), perform this polynomial long division.

J=int((-x-2)/(x^2+x+1)+2x^3-x^2-x+2)dx

Integrating the non-fractional terms first, we see that

J=int(-x-2)/(x^2+x+1)dx+1/2x^4-1/3x^3-1/2x^2+2x

Now let K=int(-x-2)/(x^2+x+1)dx.

K=-1/2int(2x+1+3)/(x^2+x+1)=-1/2int(2x+1)/(x^2+x+1)-1/2int3/(x^2+x+1)

The first can be solved using t=x^2+x+1 so dt=(2x+1).

K=-1/2intdt/t-3/2int1/(x^2+x+1)dx=-1/2lnabs(t)-3/2int1/(x^2+x+1)dx

K=-1/2ln(x^2+x+1)-3/2int1/(x^2+x+1)dx

Letting H=int1/(x^2+x+1)dx, complete the square in the denominator.

H=int1/((x+1/2)^2+3/4)dx

Let x+1/2=sqrt3/2tantheta. This implies that (x+1/2)^2=3/4tan^2theta and dx=sqrt3/2sec^2thetad theta.

H=int1/(3/4tan^2theta+3/4)(sqrt3/2sec^2thetad theta)

H=4/3 sqrt3/2int1/(tan^2theta+1)sec^2thetad theta

Since tan^2theta+1=sec^2theta, this becomes

H=2/sqrt3intd theta=2/sqrt3theta

From x+1/2=sqrt3/2tantheta we see that theta=arctan((2x+1)/sqrt3).

H=2/sqrt3arctan((2x+1)/sqrt3)

Now back-substituting into K=-1/2ln(x^2+x+1)-3/2H, we get

K=-1/2ln(x^2+x+1)-sqrt3arctan((2x+1)/sqrt3)

This fits into J=K+1/2x^4-1/3x^3-1/2x^2+2x, that is,

J=-1/2ln(x^2+x+1)-sqrt3arctan((2x+1)/sqrt3)+1/2x^4-1/3x^3-1/2x^2+2x

Finally, since I=1/4x^4ln(x^2+x+1)-1/4J, this yields

I=1/4x^4ln(x^2+x+1)+1/8ln(x^2+x+1)+sqrt3/4arctan((2x+1)/sqrt3)-1/8x^4+1/12x^3+1/8x^2-1/2x+C