What is #int1/(a+cos(x))*dx# where #a# is a constant?
1 Answer
Explanation:
We will rewrite
#cos(2alpha)=2cos^2(alpha)-1#
Let
#cos(x)=2cos^2(x/2)-1#
Rewriting:
#cos(x)=2/sec^2(x/2)-1=(2-sec^2(x/2))/sec^2(x/2)#
The denominator of the integrand is then:
#a+cos(x)=a+(2-sec^2(x/2))/sec^2(x/2)=(2+(a-1)sec^2(x/2))/sec^2(x/2)#
In the numerator, let
#a+cos(x)=(2+(a-1)(tan^2(x/2)+1))/sec^2(x/2)#
#color(white)(a+cos(x))=(a+1+(a-1)tan^2(x/2))/sec^2(x/2)#
So:
#I=int1/(a+cos(x))dx=intsec^2(x/2)/(a+1+(a-1)tan^2(x/2))dx#
Let
#I=2int1/(a+1+(a-1)u^2)du#
Hopefully we can see an inverse tangent integral in the making.
Let
This implies that
Then:
#I=2/sqrt(a-1)int1/(a+1+(a+1)tan^2(theta))sqrt(a+1)sec^2(theta)d theta#
#color(white)(I)=(2sqrt(a+1))/(sqrt(a-1)(a+1))intsec^2(theta)/(1+tan^2(theta))d theta#
Since
#I=2/(sqrt(a-1)sqrt(a+1))intd theta=2/sqrt(a^2-1)theta+C#
#I=2/sqrt(a^2-1)tan^-1(usqrt((a-1)/(a+1)))+C#
#color(white)(I)=2/sqrt(a^2-1)tan^-1(tan(x/2)sqrt((a-1)/(a+1)))+C#
Which is only valid when