What is sin(x)+cos(x) in terms of sine?

2 Answers
Apr 15, 2015

Please see two possibilities below and another in a separate answer.

Explanation:

Using Pythagorean Identity

sin^2x+cos^2x=1, so cos^2x = 1-sin^2x

cosx = +- sqrt (1-sin^2x)

sinx + cosx = sinx +- sqrt (1-sin^2x)

Using complement / cofunction identity

cosx = sin(pi/2-x)

sinx + cosx = sinx + sin(pi/2-x)

Aug 19, 2017

I've learned another way to do this. (Thanks Steve M.)

Explanation:

Suppose that sinx+cosx=Rsin(x+alpha)

Then

sinx+cosx=Rsinxcosalpha+Rcosxsinalpha

=(Rcosalpha)sinx+(Rsinalpha)cosx

The coefficients of sinx and of cosx must be equal so

Rcosalpha = 1
Rsinalpha=1

Squaring and adding, we get

R^2cos^2alpha+R^2sin^2alpha = 2 so R^2(cos^2alpha+sin^2alpha) = 2

R = sqrt2

And now

cosalpha = 1/sqrt2
sinalpha = 1/sqrt2

so alpha = cos^-1(1/sqrt2) = pi/4

sinx+cosx = sqrt2sin(x+pi/4)