What is the antiderivative of #(1)/(1+x^2)#?

2 Answers

The antiderivative of #1/(1+x^2)# is the integral

#int 1/(1+x^2)dx# which is equivalent to

#int 1/(1+x^2)dx=arctanx+C#

where #arctanx# is the inverse of the trigonometric function

#tanx# and C is the integration constant.

Feb 3, 2018

# = arctan(x) + c #

Explanation:

Let

#color(blue)(x = tantheta #

#=> color(red)(dx = sec^2 theta d theta) " By the use of the quotient rule..." #

#int 1/(1+color(blue)(x)^2 ) color(red)(dx) = int 1/(1+color(blue)((tantheta))^2 ) * color(red)(sec^2 theta d theta #

We know #sin^2 x + cos^2 x -= 1 #

#=> sin^2 x / cos^2 x + cos^2x/cos^2x -= 1/cos^2 x #

#=> tan^2x + 1 -= sec^2 x #

#=> int sec^2 theta / sec^2 theta d theta #

#=> int 1 d theta #

#=> theta + c#

If #x = tan theta => arctanx = theta #

Substitute back in...

#color(blue)( arctan(x ) + c #