What is the antiderivative of 1/(x^2+4)?

2 Answers
Mar 27, 2018

int dx/(x^2+4) = 1/2arctan(x/2)+C

Explanation:

Calculate the indefinite integral:

int dx/(x^2+4)

by substituting:

x= 2u

dx = 2du

so:

int dx/(x^2+4) = 2 int (du)/((2u)^2+4)

int dx/(x^2+4) = 2int (du)/(4u^2+4)

int dx/(x^2+4) = 1/2 int (du)/(u^2+1)

int dx/(x^2+4) = 1/2arctan(u)+C

and undoing the substitution:

int dx/(x^2+4) = 1/2arctan(x/2)+C

Mar 27, 2018

int1/(x^2+4)dx=1/2arctan(x/2)+"c"

Explanation:

int1/(x^2+4)dx=1/4int1/(x^2/4+1)dx=1/4int1/((x/2)^2+1)dx

Now let 2u=x and 2du=dx

1/4int1/((x/2)^2+1)dx=1/2int1/(u^2+1)du=1/2arctanu+"c"=1/2arctan(x/2)+"c"