What is the antiderivative of 1/(x^2-x)?

1 Answer
Oct 17, 2016

ln((x-1)/x)+C

Explanation:

Transform using partial fractions
1/(x^2-x)=1/(x(x-1))=A/x+B/(x-1)
=(A(x-1)+Bx)/(x(x-1))
Equating LHS and RHS
1=A(x-1)+Bx
Firstly let x=0 => 1=-A, so A=-1
Let x=1, then 1=B
So 1/(x^2-x)=1/(x-1)-1/x
Sointdx/(x^2-x)=intdx/(x-1)-intdx/x
=ln(x-1)-lnx
=ln((x-1)/x)
Check by differentiating ln(x-1)-lnx
d(ln(x-1)-lnx)/dx=1/(x-1)-1/x=(x-x+1)/(x^2-x)=1/(x^2-x)