Apply the revers of differentiation
'..................................................................
Example: antiderivative of x^a-> ( x^(a+1))/(a+1)+Cxa→xa+1a+1+C
This is because d/(dx) (1/(a+1) x^(a+1)+C) = (a+1)/(a+1) x^(a+1-1) = x^addx(1a+1xa+1+C)=a+1a+1xa+1−1=xa
,......................................................................
color(white)(.).
Write as x^(-5)x−5
=>"antiderivative" ->1/(-5+1)x^(-5+1) +C" " =" "1/(-4)x^-4+C⇒antiderivative→1−5+1x−5+1+C = 1−4x−4+C
color(blue)(= -1/(4x^4)+C) color(red)(" "larr" Do not forget the constant."=−14x4+C ← Do not forget the constant.
,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check:
d/(dx) (-1/(4x^4)+C) -> d/(dx) (-(x^(-4))/4+C)ddx(−14x4+C)→ddx(−x−44+C)
= (-4)(-(x^(-5))/4)" " =" "x^(-5)" "=" "1/x^5=(−4)(−x−54) = x−5 = 1x5
Which is where we started from so ok!
(Think of antiderivative as integration)