What is the antiderivative of (2x)/(sqrt(5 + 4x))?

2 Answers
Mar 31, 2018

sqrt(5+4x)/6(2x-5)+c

Explanation:

To find the antiderivertive of (2x)/(sqrt(5 + 4x)) we calculate the integral

int((2x)/(sqrt(5 + 4x)))dx

substitute u=5+4x and du=4dx
int((u-5)/(8sqrt(u)))du=1/8(int(u/sqrt(u))du-int(5/sqrt(u))du)

int(5/sqrt(u))du=10sqrt(u)=10sqrt(5+4x)
int(u/sqrt(u))du=int(sqrt(u))du=2/3sqrt(u^3)=2/3sqrt((5+4x)^3)
All in all:

sqrt(5+4x)/6(2x-5)+c

Mar 31, 2018

int(2x)/sqrt(5+4x)dx=1/6(2x-5)sqrt(5+4x)+C

Explanation:

We are asked to find

int(2x)/sqrt(5+4x)dx

Let's first substitute

u=5+4x

rArrdu=4dx

1/4du=dx

rArru-5=4x

rArr1/2(u-5)=2x

Now the integral becomes:

int(1/2(u-5))/sqrtu1/4du

rArr1/8int(u-5)/sqrtudu

Let's split this into two simpler integrals:

rArr1/8int(u/sqrtu-5/sqrtu)du

rArr1/8[intsqrtudu-5int1/sqrtudu]

... and let's express the roots as exponents to make integrating more intuitive.

rArr1/8[intu^(1/2)du-5intu^(-1/2)du]

Integrating, we get:

rArr1/8[u^(3/2)/(3/2)-5u^(1/2)/(1/2)]+C

rArr1/8[2/3u^(3/2)-10u^(1/2)]+C

rArr2/24u^(3/2)-10/8u^(1/2)+C

rArr1/12u^(3/2)-5/4u^(1/2)+C

rArr1/4u^(1/2)(1/3u-5)+C

Now let's express the answer in terms of x, and perform some algebra to simplify the expression.

rArr1/4sqrt(5+4x)(1/3(5+4x)-5)+C

rArr1/4sqrt(5+4x)(1/3(5+4x-15))+C

rArr1/4sqrt(5+4x)(1/3(4x-10))+C

rArr1/12(4x-10)sqrt(5+4x)+C

rArr1/12*2(2x-5)sqrt(5+4x)+C

rArr1/6(2x-5)sqrt(5+4x)+C