What is the antiderivative of e^(4x)e4x?

1 Answer
Mar 10, 2017

1/4e^4x+C14e4x+C

Explanation:

This will require a u-substitution.

inte^(4x)dxe4xdx

Let u=4xu=4x
du=4dxdu=4dx
then
1/4du=dx14du=dx

The integral becomes:
1/4inte^udu14eudu

Recall that the antiderivative of e^xex is equal to e^xex

So, 1/4inte^udu=1/4e^u=1/4e^(4x)+C14eudu=14eu=14e4x+C

Never forget the constant of integration.