What is the antiderivative of #ln(x+1)#?

1 Answer
Jun 2, 2016

#(x+1)ln(x+1)-x+C#

Explanation:

We have

#I=intln(x+1)dx#

We will use integration by parts:

#intudv=uv-intvdu#

For #intln(x+1)dx#, let #u=ln(x+1)# and #dv=dx#. These imply that #du=1/(x+1)dx# and #v=x#.

Thus,

#I=xln(x+1)-intx/(x+1)dx#

Solving the remaining integral:

#intx/(x+1)dx=int(x+1-1)/(x+1)dx=int1-1/(x+1)dx#

#=x-ln(x+1)+C#

So,

#I=xln(x+1)-(x-ln(x+1))+C#

#I=(x+1)ln(x+1)-x+C#