What is the antiderivative of #ln(x+1)#?
1 Answer
Jun 2, 2016
Explanation:
We have
#I=intln(x+1)dx#
We will use integration by parts:
#intudv=uv-intvdu#
For
Thus,
#I=xln(x+1)-intx/(x+1)dx#
Solving the remaining integral:
#intx/(x+1)dx=int(x+1-1)/(x+1)dx=int1-1/(x+1)dx#
#=x-ln(x+1)+C#
So,
#I=xln(x+1)-(x-ln(x+1))+C#
#I=(x+1)ln(x+1)-x+C#