I'm assuming that you have: lnx^2+x.
Then we have:
intlnx^2+x \ dx
=intlnx^2 \ dx+intx \ dx
Using the fact that log(a^b)=bloga and evaluating the second integral, we get:
=int2lnx \ dx+1/2x^2+c_1
=2intlnx \ dx+1/2x^2+c_1
Let's evaluate intlnx \ dx. Use integration by parts:
intu \ dv=uv-intv \ du
Let u=lnx,dv=1.
:.v=x,du=1/x
Putting together, we get:
intlnx \ dx=xlnx-intx*1/x \ dx
=xlnx-int1 \ dx
=xlnx-x
=xlnx-x+c_2
So, we get:
=2(xlnx-x)+c_2+1/2x^2+c_1 (notice how I didn't put 2c_2 because constant ALWAYS goes after full integration)
=2xlnx-2x+c_2+1/2x^2+c_1
=2xlnx-2x+1/2x^2+C