What is the antiderivative of ln(x)^2+xdx?

1 Answer
Jun 29, 2018

2xlnx-2x+1/2x^2+C

Explanation:

I'm assuming that you have: lnx^2+x.

Then we have:

intlnx^2+x \ dx

=intlnx^2 \ dx+intx \ dx

Using the fact that log(a^b)=bloga and evaluating the second integral, we get:

=int2lnx \ dx+1/2x^2+c_1

=2intlnx \ dx+1/2x^2+c_1

Let's evaluate intlnx \ dx. Use integration by parts:

intu \ dv=uv-intv \ du

Let u=lnx,dv=1.

:.v=x,du=1/x

Putting together, we get:

intlnx \ dx=xlnx-intx*1/x \ dx

=xlnx-int1 \ dx

=xlnx-x

=xlnx-x+c_2

So, we get:

=2(xlnx-x)+c_2+1/2x^2+c_1 (notice how I didn't put 2c_2 because constant ALWAYS goes after full integration)

=2xlnx-2x+c_2+1/2x^2+c_1

=2xlnx-2x+1/2x^2+C