What is the antiderivative of (sqrt(1 + sqrt((1+sqrt(x)))dx?

2 Answers
Jun 2, 2016

8/9(sqrt(sqrtx+1)+1)^(9/2)-24/7(sqrt(sqrtx+1)+1)^(7/2)+16/5(sqrt(sqrtx+1)+1)^(5/2)+C

Explanation:

Rearrange the integrand:

intsqrt(1+sqrt(1+sqrtx))dx=intsqrt(sqrt(sqrtx+1)+1)dx

Substitute and let u=sqrt(sqrtx+1)+1. Finding du is a little odd, but it's du=1/(4sqrt(sqrtx+1)sqrtx).

Rearranging our integrand so that our du value is present:

=4int(sqrt(sqrt(sqrtx+1)+1)*sqrt(sqrtx+1)sqrtx)/(4sqrt(sqrtx+1)sqrtx)dx

Here, make the following substitutions in the numerator:

  • sqrt(sqrt(sqrtx+1)+1)=u^(1/2)
  • sqrt(sqrtx+1)=u-1
  • sqrtx=(u-1)^2-1=u(u-2)

The 1/(4sqrt(sqrtx+1)sqrtx)dx will become du.

=4intu^(1/2)(u-1)u(u-2)du=4intu^(3/2)(u-1)(u-2)du

Expand and integrate!

=4int(u^2-3u+2)u^(3/2)du=4int(u^(7/2)-3u^(5/2)+2u^(3/2))du

=4(2/9u^(9/2)-6/7u^(7/2)+4/5u^(5/2))+C

=8/9(sqrt(sqrtx+1)+1)^(9/2)-24/7(sqrt(sqrtx+1)+1)^(7/2)+16/5(sqrt(sqrtx+1)+1)^(5/2)+C

Jun 2, 2016

After... what, 30 minutes? I got 8/9(sqrt(1+sqrt(1 + sqrtx)))^9 - 24/7(sqrt(1+sqrt(1 + sqrtx)))^7 + 16/5(sqrt(1+sqrt(1 + sqrtx)))^5 + C. See, it's not impossible. Just keep track of your substitutions.


For

int sqrt(1+sqrt(1+sqrtx))dx,

let's try letting u = sqrtx. Then, du = 1/(2sqrtx)dx, and 2udu = dx.

= 2int usqrt(1+sqrt(1+u))du

Next, try s = u+1. Thus, ds = du, and we have

= 2int (s-1)sqrt(1+sqrts)ds

= 2int ssqrt(1+sqrts)ds - 2int sqrt(1+sqrts)ds

Then, we can try letting t = sqrts. So, dt = 1/(2sqrts)ds, and 2tdt = ds. So:

sqrt(1 + sqrts) = sqrt(1+t)
s = t^2, and

=> 4int t^3sqrt(1+t)dt - 4int tsqrt(1+t)dt

Now, for one last substitution... Let r = sqrt(1+t). Then, dr = 1/(2sqrt(1+t))dt and 2rdr = dt. Common theme, here.

So now:

r^2 = 1 + t => t^3 = (r^2 - 1)^3
t = r^2 - 1

=> 8int (r^2 - 1)^3r^2dr - 8int (r^2 - 1)r^2dr

This is definitely doable. Expand the polynomial to get:

=> 8int (r^4 - r^2)(r^2 - 1)(r^2 - 1)dr - 8int r^4 - r^2dr

= 8int (r^4 - r^2)(r^4 - 2r^2 + 1)dr - 8int r^4 - r^2dr

= 8int r^8 - 2r^6 + r^4 - r^6 + 2r^4 - r^2dr - 8int r^4 - r^2dr

= 8int r^8 - 3r^6 + 3r^4 - r^2dr - 8int r^4 - r^2dr

Hence, we should get:

= 8[r^9/9 - 3/7r^7 + 3/5r^5 - r^3/3] - 8[r^5/5 - r^3/3]

= 8/9r^9 - 24/7r^7 + 24/5r^5 cancel(- 8/3r^3) - 8/5r^5 + cancel(8/3r^3)

= 8/9r^9 - 24/7r^7 + 16/5r^5

Finally, let's back-substitute to get our answer.

r = sqrt(1+t), so our next step gives us

= 8/9(sqrt(1+t))^9 - 24/7(sqrt(1+t))^7 + 16/5(sqrt(1+t))^5.

Now, since t = sqrts, we have

= 8/9(sqrt(1+sqrts))^9 - 24/7(sqrt(1+sqrts))^7 + 16/5(sqrt(1+sqrts))^5.

Then, since s = u + 1, we have

= 8/9(sqrt(1+sqrt(u+1)))^9 - 24/7(sqrt(1+sqrt(u+1)))^7 + 16/5(sqrt(1+sqrt(u+1)))^5.

Lastly, we first let u = sqrtx. So, we end up with:

= color(blue)(8/9(sqrt(1+sqrt(1 + sqrtx)))^9 - 24/7(sqrt(1+sqrt(1 + sqrtx)))^7 + 16/5(sqrt(1+sqrt(1 + sqrtx)))^5 + C)

Oh, look at that. It worked.