What is the antiderivative of (sqrt(1 + sqrt((1+sqrt(x)))dx?
2 Answers
Explanation:
Rearrange the integrand:
intsqrt(1+sqrt(1+sqrtx))dx=intsqrt(sqrt(sqrtx+1)+1)dx
Substitute and let
Rearranging our integrand so that our
=4int(sqrt(sqrt(sqrtx+1)+1)*sqrt(sqrtx+1)sqrtx)/(4sqrt(sqrtx+1)sqrtx)dx
Here, make the following substitutions in the numerator:
sqrt(sqrt(sqrtx+1)+1)=u^(1/2) sqrt(sqrtx+1)=u-1 sqrtx=(u-1)^2-1=u(u-2)
The
=4intu^(1/2)(u-1)u(u-2)du=4intu^(3/2)(u-1)(u-2)du
Expand and integrate!
=4int(u^2-3u+2)u^(3/2)du=4int(u^(7/2)-3u^(5/2)+2u^(3/2))du
=4(2/9u^(9/2)-6/7u^(7/2)+4/5u^(5/2))+C
=8/9(sqrt(sqrtx+1)+1)^(9/2)-24/7(sqrt(sqrtx+1)+1)^(7/2)+16/5(sqrt(sqrtx+1)+1)^(5/2)+C
After... what, 30 minutes? I got
For
int sqrt(1+sqrt(1+sqrtx))dx,
let's try letting
= 2int usqrt(1+sqrt(1+u))du
Next, try
= 2int (s-1)sqrt(1+sqrts)ds
= 2int ssqrt(1+sqrts)ds - 2int sqrt(1+sqrts)ds
Then, we can try letting
sqrt(1 + sqrts) = sqrt(1+t)
s = t^2, and
=> 4int t^3sqrt(1+t)dt - 4int tsqrt(1+t)dt
Now, for one last substitution... Let
So now:
r^2 = 1 + t => t^3 = (r^2 - 1)^3
t = r^2 - 1
=> 8int (r^2 - 1)^3r^2dr - 8int (r^2 - 1)r^2dr
This is definitely doable. Expand the polynomial to get:
=> 8int (r^4 - r^2)(r^2 - 1)(r^2 - 1)dr - 8int r^4 - r^2dr
= 8int (r^4 - r^2)(r^4 - 2r^2 + 1)dr - 8int r^4 - r^2dr
= 8int r^8 - 2r^6 + r^4 - r^6 + 2r^4 - r^2dr - 8int r^4 - r^2dr
= 8int r^8 - 3r^6 + 3r^4 - r^2dr - 8int r^4 - r^2dr
Hence, we should get:
= 8[r^9/9 - 3/7r^7 + 3/5r^5 - r^3/3] - 8[r^5/5 - r^3/3]
= 8/9r^9 - 24/7r^7 + 24/5r^5 cancel(- 8/3r^3) - 8/5r^5 + cancel(8/3r^3)
= 8/9r^9 - 24/7r^7 + 16/5r^5
Finally, let's back-substitute to get our answer.
= 8/9(sqrt(1+t))^9 - 24/7(sqrt(1+t))^7 + 16/5(sqrt(1+t))^5.
Now, since
= 8/9(sqrt(1+sqrts))^9 - 24/7(sqrt(1+sqrts))^7 + 16/5(sqrt(1+sqrts))^5.
Then, since
= 8/9(sqrt(1+sqrt(u+1)))^9 - 24/7(sqrt(1+sqrt(u+1)))^7 + 16/5(sqrt(1+sqrt(u+1)))^5.
Lastly, we first let
= color(blue)(8/9(sqrt(1+sqrt(1 + sqrtx)))^9 - 24/7(sqrt(1+sqrt(1 + sqrtx)))^7 + 16/5(sqrt(1+sqrt(1 + sqrtx)))^5 + C)
Oh, look at that. It worked.