What is the antiderivative of x^3/(1+x^2)?

1 Answer
Jul 7, 2016

1/2{x^2+1-ln(x^2+1)}+C.

OR

1/2{x^2-ln(x^2+1)}+C_1, where C_1=C+1/2.

Explanation:

Let I=intx^3/(1+x^2)dx

We take substn. x^2+1=t, so that, 2xdx=dt.

Also, x^2+1=t rArr x^2=t-1

Now, I=intx^3/(1+x^2)dx=1/2int(x^2*2x)/(1+x^2)dx=1/2int(t-1)/tdt
=1/2int{t/t-1/t}dt=1/2int{1-1/t}dt=1/2{t-lnt}=1/2{x^2+1-ln(x^2+1)}+C.

I is also=1/2x^2+1/2-1/2ln(x^2+1)+C
=1/2{x^2-ln(x^2+1)}+C_1, where C_1=C+1/2

Is this not enjoyable?! Enjoy maths.!