What is the antiderivative of y=arc cotx?

1 Answer
Aug 18, 2016

int"arccot"(x)dx=x"arccot"(x)+1/2ln(x^2+1)+C.

Explanation:

Let I=intydx=int"arccot"(x)dx=int("arccot"(x))(1)dx

Now, we use the Rule of Integration by Parts, which states,

intuvdx=uintvdx-int((du)/dx*intvdx)dx

We take u="arccot"(x)rArr (du)/dx=-1/(x^2+1), and,

v=1 rArr intvdx=x.

Hence, I=x"arccot"(x)+int x/(x^2+1)dx

=x"arccot"(x)+1/2int(2x)/(x^2+1)dx

=x"arccot"(x)+1/2int(d(x^2+1))/(x^2+1)

:. I=x"arccot"(x)+1/2ln(x^2+1)+C, .......[as, intdt/t=ln|t|].