What is the Binomial Expansion of (1+r)^-1(1+r)1?

1 Answer
Jul 18, 2015

If abs(r) < 1|r|<1 then
(1+r)^(-1) = sum_(n=0)^oo(-1)^nr^n = 1 - r + r^2 - r^3 +...

If abs(r) > 1 then
(1+r)^-1 = sum_(n=0)^oo(-1)^nr^(-n-1) = 1/r-1/(r^2)+1/(r^3)-...

Explanation:

If abs(r) < 1 then sum_(n=0)^oo(-1)^nr^n converges and

(1+r)sum_(n=0)^oo(-1)^nr^n=1 + r - r + r^2 - r^2 + r^3 - r^3 +... = 1

So (1+r)^-1 = 1/(1+r) = sum_(n=0)^oo(-1)^nr^n

If abs(r) > 1 then (1+r)^(-1) = 1/(1+r) = (1/r)/(1/r + 1) = (1/r)*(1+1/r)^(-1)

and abs(1/r) < 1, so we can use our previous formula to get:

(1+r)^(-1) = (1/r)sum_(n=0)^oo(-1)^nr^(-n)=sum_(n=0)^oo(-1)^nr^(-n-1)

That just leaves the case abs(r) = 1, i.e. r = +-1

(1+1)^-1 = 1/2

(1-1)^-1 = 1/0 is undefined