What is the Binomial Expansion of (2k+x)^n? Precalculus The Binomial Theorem Pascal's Triangle and Binomial Expansion 1 Answer Harish Chandra Rajpoot Jul 11, 2018 Binomial expansion of (2k+x)^n is given as (2k+x)^n =^nC_0(2k)^n(x)^0+^nC_1(2k)^{n-1}(x)^1+^nC_2(2k)^{n-2}(x)^2+\ldots+^nC_r(2k)^{n-r}(x)^r+\ldots+^nC_n(2k)^{n-n}(x)^n =^nC_0(2k)^n+^nC_1(2k)^{n-1}x+^nC_2(2k)^{n-2}(x)^2+\ldots+^nC_r(2k)^{n-r}x^r+\ldots+^nC_nx^n Answer link Related questions What is Pascal's triangle? How do I find the nth row of Pascal's triangle? How does Pascal's triangle relate to binomial expansion? How do I find a coefficient using Pascal's triangle? How do I use Pascal's triangle to expand (2x + y)^4? How do I use Pascal's triangle to expand (3a + b)^4? How do I use Pascal's triangle to expand (x + 2)^5? How do I use Pascal's triangle to expand (x - 1)^5? How do I use Pascal's triangle to expand a binomial? How do I use Pascal's triangle to expand the binomial (a-b)^6? See all questions in Pascal's Triangle and Binomial Expansion Impact of this question 3073 views around the world You can reuse this answer Creative Commons License