What is the binomial theorem?

2 Answers
Feb 12, 2016

It is a method one may use to expand a binomial expression raised to a positive integer power as follows :

(x+y)^n=sum_(r=0)^n""^nC_rx^(n-r)y^r(x+y)n=nr=0nCrxnryr

The combination notation used is defined as follows :

""^nC_r=(n!)/((n-r)!r!)nCr=n!(nr)!r!

Example :

Expand (2x+3y)^5(2x+3y)5.

This is a binomial (2 terms) raised to an integer power, so the binomial theorem is valid and may be used as follows :

(2x+3y)^5=sum_(r=0)^5 ""^5C_r(2x)^(5-r)(3y)^r(2x+3y)5=5r=05Cr(2x)5r(3y)r

=""^5C_0(2x)^(5-0)(3y)^0+""^5C_1(2x)^(5-1)(3y)^1+""^5C_2(2x)^(5-2)(3y)^2+""^5C_3(2x)^(5-3)(3y)^3+""^5C_4(2x)^(5-4)(3y)^4+""^5C_5(2x)^(5-5)(3y)^5=5C0(2x)50(3y)0+5C1(2x)51(3y)1+5C2(2x)52(3y)2+5C3(2x)53(3y)3+5C4(2x)54(3y)4+5C5(2x)55(3y)5

=(1)32x^5(1)+(5)(16x^4)(3y)+(10)(8x^3)(9y^2)+(10)(4x^2)(27y^3)+(5)(2x)(81y^4)+(1)(1)(243y^5)=(1)32x5(1)+(5)(16x4)(3y)+(10)(8x3)(9y2)+(10)(4x2)(27y3)+(5)(2x)(81y4)+(1)(1)(243y5)

=32x^5+240x^4y+720x^3y^2+1080x^2y^3+810xy^4+243y^5=32x5+240x4y+720x3y2+1080x2y3+810xy4+243y5.

Feb 16, 2016

There is a simpler way of expanding a binomial that uses the binomial theorem but takes a more intuitive approach.

Instead of doing ""_n"C"_rnCr in front of each term, we can use the coefficients in the n+1n+1 row of Pascal's triangle.

In the case of (2x+3y)^5(2x+3y)5, the ""_n"C"_rnCr series will be identical to the 66th row of Pascal's triangle:

www.cut-the-knot.org

The row we want is

1,5,10,10,5,11,5,10,10,5,1

In order to deal with exponents, know that the exponent on the first term will start at 55 and work its way down to 00, and the second term will start with an exponent of 00 and work its way up to 55.

If there is a negative term they will alternate positive, negative, positive, negative, etc.

For (2x+3y)^5(2x+3y)5, we get

1(2x)^5(3y)^0+5(2x)^4(3y)^1+10(2x)^3(3y)^2+10(2x)^2(3y)^3+5(2x)^1(3y)^4+1(2x)^0(3y)^51(2x)5(3y)0+5(2x)4(3y)1+10(2x)3(3y)2+10(2x)2(3y)3+5(2x)1(3y)4+1(2x)0(3y)5

Note that anything to the 00 power is 11.

Simplified, this gives us

32x^5+240x^4y+720x^3y^2+1080x^2y^3+810x^4+243y^532x5+240x4y+720x3y2+1080x2y3+810x4+243y5