What is the derivative: g(y) = sqrt[2y + (3y + 4y^2)^3]g(y)=2y+(3y+4y2)3?

I got to
[2 + (9 + 24y)(3y + 4y^2)^2]/{2 sqrt [2y + (3y + 4y^2)^3]}2+(9+24y)(3y+4y2)222y+(3y+4y2)3.

1 Answer
Feb 7, 2018

Your answer is right

Explanation:

We are given g(y)=sqrt[2y+(3y+4y^2)^3]=(2y+(3y+4y^2)^3)^(1/2)g(y)=2y+(3y+4y2)3=(2y+(3y+4y2)3)12

g(y)=d/dy[(2y+(3y+4y^2)^3)^(1/2)]g(y)=ddy[(2y+(3y+4y2)3)12]
=1/2*(2y+(3y+4y^2)^3)^(1/2-1)* d/dy[2y+(3y+4y^2)^3]=12(2y+(3y+4y2)3)121ddy[2y+(3y+4y2)3]

=(2y+(3y+4y^2)^3)^(-1/2)/2* (d/dy[2y]+d/dy[(3y+4y^2)^3])=(2y+(3y+4y2)3)122(ddy[2y]+ddy[(3y+4y2)3])

=(2y+(3y+4y^2)^3)^(-1/2)/2* (2+(3*(3y+4y^2)^(3-1)d/dy[3y+4y^2]))=(2y+(3y+4y2)3)122(2+(3(3y+4y2)31ddy[3y+4y2]))

=(2y+(3y+4y^2)^3)^(-1/2)/2* (2+3(3y+4y^2)^2(3+8y))=(2y+(3y+4y2)3)122(2+3(3y+4y2)2(3+8y))

=((2y+(3y+4y^2)^3)^(-1/2)(2+3(3y+4y^2)^2(3+8y)))/2=(2y+(3y+4y2)3)12(2+3(3y+4y2)2(3+8y))2

=(2+3(3y+4y^2)^2(3+8y))/(2(2y+(3y+4y^2)^3)^(1/2))=2+3(3y+4y2)2(3+8y)2(2y+(3y+4y2)3)12

=(2+(9+24y)(3y+4y^2)^2)/(2sqrt(2y+(3y+4y^2)^3))=2+(9+24y)(3y+4y2)222y+(3y+4y2)3