We are given g(y)=sqrt[2y+(3y+4y^2)^3]=(2y+(3y+4y^2)^3)^(1/2)g(y)=√2y+(3y+4y2)3=(2y+(3y+4y2)3)12
g(y)=d/dy[(2y+(3y+4y^2)^3)^(1/2)]g(y)=ddy[(2y+(3y+4y2)3)12]
=1/2*(2y+(3y+4y^2)^3)^(1/2-1)* d/dy[2y+(3y+4y^2)^3]=12⋅(2y+(3y+4y2)3)12−1⋅ddy[2y+(3y+4y2)3]
=(2y+(3y+4y^2)^3)^(-1/2)/2* (d/dy[2y]+d/dy[(3y+4y^2)^3])=(2y+(3y+4y2)3)−122⋅(ddy[2y]+ddy[(3y+4y2)3])
=(2y+(3y+4y^2)^3)^(-1/2)/2* (2+(3*(3y+4y^2)^(3-1)d/dy[3y+4y^2]))=(2y+(3y+4y2)3)−122⋅(2+(3⋅(3y+4y2)3−1ddy[3y+4y2]))
=(2y+(3y+4y^2)^3)^(-1/2)/2* (2+3(3y+4y^2)^2(3+8y))=(2y+(3y+4y2)3)−122⋅(2+3(3y+4y2)2(3+8y))
=((2y+(3y+4y^2)^3)^(-1/2)(2+3(3y+4y^2)^2(3+8y)))/2=(2y+(3y+4y2)3)−12(2+3(3y+4y2)2(3+8y))2
=(2+3(3y+4y^2)^2(3+8y))/(2(2y+(3y+4y^2)^3)^(1/2))=2+3(3y+4y2)2(3+8y)2(2y+(3y+4y2)3)12
=(2+(9+24y)(3y+4y^2)^2)/(2sqrt(2y+(3y+4y^2)^3))=2+(9+24y)(3y+4y2)22√2y+(3y+4y2)3